On Solutions of Three Quasi-geostrophic Models

نویسنده

  • Jiahong Wu
چکیده

We consider the quasi-geostrophic model and its two different regularizations. Global regularity results are established for the regularized models with critical or sub-critical indices. Constantin, E and Titi’s proof of Onsager’s conjecture [2] and the notion of dissipative solutions of Duchon and Robert [9] are extended to weak solutions of the quasi-geostrophic equation. AMS (MOS) Numbers: 86A05, 35K55, 35Q35, 76U05

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Quasi-geostrophic Equation and Its Two Regularizations

We consider the quasi-geostrophic model and its two different regularizations. Global regularity results are established for the regularized models with critical or sub-critical indices. The proof of Onsager’s conjecture concerning weak solutions of the 3D Euler equations and the notion of dissipative solutions of Duchon and Robert are extended to weak solutions of the quasi-geostrophic equation.

متن کامل

Dissipative quasi - geostrophic equations with initial data

In this paper, we study the solutions of the initial-value problem (IVP) for the quasi-geostrophic equations, namely ∂tθ + u.∇θ + κ (−∆) θ = 0, on R × ]0,+∞[ , θ (x, 0) = θ0(x), x ∈ R. Our goal is to establish the existence and uniqueness of regulars solutions for the two-dimentional dissipative quasi-geostrophic equation with initial data in a Sobolev space H satisfying suitable conditions wit...

متن کامل

A Regularity Criterion for the Dissipative Quasi-geostrophic Equations

We establish a regularity criterion for weak solutions of the dissipative quasi-geostrophic equations in mixed time-space Besov spaces.

متن کامل

Global Regularity for the Critical Dispersive Dissipative Surface Quasi-geostrophic Equation

We consider surface quasi-geostrophic equation with dispersive forcing and critical dissipation. We prove global existence of smooth solutions given sufficiently smooth initial data. This is done using a maximum principle for the solutions involving conservation of a certain family of moduli of continuity.

متن کامل

Regularity of Hölder continuous solutions of the supercritical quasi-geostrophic equation

We present a regularity result for weak solutions of the 2D quasi-geostrophic equation with supercritical (α < 1/2) dissipation (−∆) : If a Leray-Hopf weak solution is Hölder continuous θ ∈ C(R) with δ > 1 − 2α on the time interval [t0, t], then it is actually a classical solution on (t0, t]. AMS (MOS) Numbers: 76D03, 35Q35

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000